Instituto Naeon

Agende sua consulta: (11) 2649-9728 (11) 94540-9553

Fale com um especialista: (11) 2649-9728 (11) 94540-9553

Robotic Transfer of the Latissimus Dorsi

Publicado em: 2 de fevereiro de 2021 por Naeon
Publicações Científicas

Robotic Transfer of the Latissimus Dorsi Arthroscopy Techniques, Vol 9, No 6 (June), 2020: pp e769-e773


Robotic surgery has been used for a long time, it is earning space and expanding of use to daily medical practice in several surgical specialties with advantages over the traditional surgical methods. This technical Note presents an endoscopic robotic posterior shoulder approach that allow the surgeon to perform Latissimus Dorsi transfer endoscopically. 

This technical note aims to present the using of the DaVinci®(Intuitive Surgical, Sunnyvale, CA, USA) robot for transfers related to rotator cuff tears.


Robotic surgery has been used for a long time1-2, it is earning space and expanding of use to daily medical practice in several surgical specialties with advantages over the traditional surgical methods3,4. Within orthopedics, we highlight the use of robotics in brachial plexus6,7 and neurologic releases7-9.

The association of the robotic technology with endoscopy have further allowed a faster recovery for the patient for many applications with shorter time of hospitalization and minimally invasive approache10

Advantages of this method include movement accuracy, high resolution imaging with three-dimensional vision, gas infusion rather than saline solution (better visualization), filtering of the surgeon’s tremor when manipulating objects, movement scaling and hand-free camera manipulation11-14. In addition for future, there is the possibility of remote surgery (telesurgery) where the surgical team can treat a patient far away1, 2 or a surgical team may be composed of professionals located in different cities or countries, treating the same patient simultaneously.

Some shoulder pathologies that will need posterior shoulder approach may need aggressive and traumatic exposure with extensive manipulation of soft tissues. The possibility to use a minimal invasive approach can potentially be important for both the time of rehabilitation and avoiding local soft tissue adhesions. In Addition, when performing a large posterior open approach, one needs the use of tensioned retractors in order to keep the surgeon’s field in a suitable manner. The use of these tensioned retractors can eventually damage the deeper muscle layer as well as other neurovascular structures15,16.

The minimally invasive procedures have demonstrated decrease of adhesions, avoiding reoperations and physical therapies during long times. Indeed, this advantage mentioned above make these procedures cost-effectives10.

There are few descriptions using the aid of robotics in the area of ​​orthopedics, especially in shoulder surgery, a practice already widespread in other surgical areas, but which have been gaining space and recent publications17-19.

In shoulder surgery, the use of robotic-assisted surgery for better identification of the quadrangular space of the shoulder, identification of the axillary and radial nerves, and better identification of the latissimus dorsi muscle was done in a cadaver trial before20

The visualization and partial manipulation of the latissimus dorsi muscle has already been reported, in order to aid the transportation of the muscular pedicle, with technique that was used as reference for our study19.

Axillary nerve identification has also been described9, making a contribution to our study and confirming the viability of the method.

Regarding bleeding, studies in live patients have shown that the air insufflation have been effective on avoiding it8.

This technical note is based on previous cadaveric trials20 and aims to present the using of the DaVinci®(Intuitive Surgical, Sunnyvale, CA, USA) robot for transfers of the latissimus dorsi tendon to humeral head we have already performed in four live patients for massive rotator cuff tears.

Indications, pre-operative evaluation and imaging

This procedure has the same indications of the traditional open transfer of the Latissimus dorsi tendon, patients with massive rotator cuff tears with poor biologic characteristics of the tendon. Fat infiltration degrees 3 and 4 of Goutallier with a retraction of more than 4cm in patients under 60 years presenting active subscapularis tendon is the ideal surgical indication. 

Patients will present pain and difficulty or impossibility for shoulder elevation and abduction. The youngest the patient is, better tends to be the result. 

Surgical Technique

Patient is left in ventral decubitus, the arm being maintained in a position similar to 90o elevation.

The inferior border of the Latissimus Dorsi can be localized by palpation. A draw of the muscle is done in the skin based on its inferior border and its known anatomy. A central line of the          Latissimus Dorsi is also drawn. An 1cm incision is made in the skin, 10 to 15cm from the axilla, the central portal. Two other portals are made 5-7cm perpendicular medial and lateral to the central line.  These portals are located 7-10cm from the axilla. The central portal is used to insert the optics and through the other two portals the robotic hands were introduced to access the muscular fascia where a cavity was formed through blunt dissection.This space was made for triangulation as an initial working cavity, once there are no natural cavities in this region.

A trocar and a canula are introduced into each of the incisions, in a common direction in the cavity the surgeon created (Fig. 1). In the first portal on the trapezius, the camera of the DaVinci® SI or Xi robot (Intuitive Surgical, Sunnyvale, CA, USA), with an optic of 300(Fig.2) is introduced.

Carbon dioxide was inflated at a constant 8-14mmHg pressure through the chamber portal into the working cavity, stretching the soft tissues and opening the cavity. The robotic arms used a Cadieri Forceps 8mm (Intuitive Surgical, Sunnyvale, CA, USA) and a Hot ShearsTM Monopolar Curved Scissor 8mm (Intuitive Surgical, Sunnyvale, CA, USA).

The first objective was to clean the area around the camera so that a best dissection and identification of the initial working cavity is done. After this first stage, we search for the superior border of the latissimus dorsi muscle and its division with teres major. Dissection using this muscular plane is done until its entrance deep into the medial border of the long head of the triceps(Fig. 3). 

The Latissimus is released and separated from the teres major(Fig. 4), the radial nerve is just below the latissimus and it is possible to visualize it but not required (Fig. 5). One needs to take care the neurovascular pedicle in order to not damage it. A 0 Vicryl™ J318(Johnson & Johnson-São Paulo-Brazil) is inserted by the cephalic robotic hand’s portal. The latissimus dorsi tendon is sutured by using a Cadieri and a DeBakey Forceps(Intuitive Surgical, Sunnyvale, CA, USA)(Fig. 6)(Video. 1). The sutured tendon is pulled out of the body through the central portal of the optics using a gastric forceps.

A small 3-5cm incision is done on the lateral deltoid and using the finger a dissection of the subdeltoid space reaches the cavity created by the robot. A long gastric grasper is inserted through the cephalic robotic hand’s portal until it reaches the subdeltoid space. A guide polyester 5.0 wire is passed by using this grasper, leaving optics portal(Fig. 7). 

The humeral head is drilled and 2 anchors are inserted. These anchor wires will pass from the deltoid approach to the optics portal using the 5.0 polyester wire as a guide. 

The tendon is sutured to the anchor wires using a Krakow(Fig. 8) and passes to subacromial space pulled by the anchor wires, and a standard tendon to bone suture is done. More anchors and sutures can be done after the tendon lies the humeral head. 

Portals and deltoid lateral approach are sutured.


A sling is used for 5 weeks. Pendular movements and passive elevation until 90º are allowed 2 weeks after surgery. After this period the active exercises isometric external rotation and elevation begin. In more two weeks isokinetic and proprioception movements begin. A scapular retraction and shoulder extension need to be stimulated in the initial movements, once Latissimus dorsi can also be activated during these movements. Better evolutions are present in patients with better active movements before the surgery.

Pearls and pitfalls are summarized on table. 1. Advantages and Disadvantages are summarized on table. 2.


Traditional approaches for the latissimus dorsi are wide requiring big posterior incisions with cosmetic and scar formation implications.

Previous cadaveric and live patient studies were used to stablish principles for the robotic latissimus dorsi transfer presented on this technical note.

The authors aim to present a surgical technique that can be improved and even be used for other orthopedic applications with future introduction  new robots, new robotic arms and smaller optics. 

There are few studies assessing the latissimus dorsi using the aid of robotics, all of them access the muscle and the origin of the latissimus for free flaps17-20. This is the first in vivo robotic assisted shoulder surgical procedure done for transfer of the latissimus dorsi insertion to improve function after rotator cuff tears. Tendon, neurovascular structures, quadrangular space were robotically identified in cadaver trials by the author before in other trials, thus surgical viability and safety of the procedure were previously checked9,20.

Other robotic orthopedic applications in live patients have also demonstrated that the air insufflation effectiveness on better bleeding conctrol8.

The viability of the robotic introduction in shoulder surgery was shown by the authors that hope to encourage further studies in the area.

The limitations of this technique are cost of the robot, robotic hands and its scisures. Necessity of specific training on robotic surgery, that is currently costly and not available in many hospitals, can also limits its current use.

In this moment surgical time is longer than in the open procedure, however this situation tends to improve on time. 


1. Ballantyne GH, Moll F. The da Vinci telerobotic surgical system: the virtual operative field and telepresence surgery. Surg Clin North Am. 2003; 83:1293-304.

2. Kavoussi LR, Moore RG, Partin AW, Bender JS, Zenilman ME, Satava, RM. Telerobotic assisted laparoscopic surgery: initial laboratory and clinical experience. Urology; 1994; 44(1): 15-9.

3. Oldani A, Bellora P, Monni, M, Amato B, Gentilli S. Colorectal surgery in elderly patients: our experience with DaVinci Xi® System. Aging Clin Exp Res. 2017; 29(1):91-99.

4. Gallotta V, Cicero C, Conte C, Vizzielli G, Petrillo M, Fagotti A et al. Robotic Versus Laparoscopic Staging for Early Ovarian Cancer: A Case Matched Control Study. J Minim Invasive Gynecol. 2017; 24(2):293-298.

5. Mantovani G, Liverneaux PA, Garcia JC, Berner SH, Bednar MS and Mohr CJ. Endoscopic exploration and repair of brachial plexus with telerobotic manipulation: a cadaver trial. J Neurosurg. 2011;115(3):659-64. 

6. Garcia JC, Lebailly F, Mantovani G, Mendonça LA, Garcia JM and Liverneaux PA. Telerobotic Manipulation of the Brachial Plexus. J reconstr Microsurg 2012; 28(7):491-494

7. Garcia JC, Mantovani G, Gouzou S and Liverneaux P. Telerobotic anterior translocation of the ulnar nerve. Journal of Robotic Surgery. 2011; 5(2):153–156.

8. Garcia JC, Montero EFS. Endoscopic Robotic Decompression of the Ulnar Nerve at the Elbow. Arthroscopy Techniques. 2014; 3: 383-387

9. Melo PMP, Garcia JC, Montero EFS, Atik T, Robert EG, Facca S et al. Feasibility of an endoscopic approach to the axillary nerve and the nerve to the long head of the triceps brachii with the help of the Da Vinci Robot. Chirurgie de la Main. 2013; 32: 206-9

10. Morgan JA, Thornton BA, Peacock JC, Hollingsworth KW, Smith CR, Oz MC, Argenziano M. Does robotic technology make minimally invasive cardiac surgery too expensive? A hospital cost analysis of robotic and conventional techniques. J Card Surg. 2005; 20(3):246-51.

11. Byrn JC, Schluender S, Divino CM, Conrad J,Gurland B, Shlasko E, et al. Three-dimensional imaging improves surgical performance for both novice and experienced operators using the da Vinci Robot System. Am J Surg. 2007; 193:519–22. 

12. Solis M. New Frontiers in Robotic Surgery: The latest high-tech surgical tools allow for superhuman sensing and more. IEEE Pulse. 2016; 7(6): 51-55.

13. Willems JIP, Shin AM, Shin DM, Bishop AT, Shin AY. A Comparison of Robotically Assisted Microsurgery versus Manual Microsurgery in Challenging Situations. Plast Reconstr Surg. 2016; 137(4): 1317-24.

14. Shademan A, Decker RS, Opfermann JD, Leonard SK, Axel K, Peter CW. Supervised autonomous robotic soft tissue surgery. Sci Transl Med. 2016; 8(337): 337ra64.

15. Wijdicks CA, Armitage BM, Anavian J, Schroder LK, Cole PA. Vulnerable neurovasculature with a posterior approach to the scapula. Clin Orthop Relat Res. 2009; 467(8): 2011-7.

16. Chalmers, Peter Nissen; Van Thiel, Geoff S; Trenhaile, Scott W. Surgical Exposures of the Shoulder. J Am Acad Orthop Surg. 2016; 24(4): 250-8.

17. Selber JC, Baumann DP, Holsinger FC. Robotic latissimus dorsi muscle harvest: a case series.  Plast Reconstr Surg. 2012; 129(6):1305-12. 

18. JH Chung, You HJ, Kim HS, Lee BI, Park SH , Yoon ES. A Novel Technique for Robot Assisted Latissimus Dorsi Flap Harvest. J Plast Reconstr Aesthet Surg. 2015; 68 (7), 966-72.

19. Ichihara S, Bodin F, Pedersen JC, Melo PP, Garcia JC, Sybille F et al.  Robotically assisted harvest of the latissimus dorsi muscle: A cadaver feasibility study and clinical test case. Hand Surgery and Rehabilitation. 2016; 35:81–84

20. Garcia JC, Gomes RVF, Kozonara ME, Steffen AM. Posterior Endoscopy of the Shoulder with the aid of the Da Vinci SI robot – a Cadaveric Feasibility Study. Acta of Shoulder and Elbow Surgery. 2017; 2(1):36-39.

Video Legends

Robotic transfer of the Latissimus Dorsi Tendon from NAEON Institute Sao Paulo Brazil

Portals are done 10-15cm from the latissimus dorsi insertion, 1 central; 1 superior and 1 inferior. 

As no natural cavities are present in this area one can gently create a subcutaneous cavity.

The optics trocart is the central, superior and inferior are dedicated to the robotic hands.

This is an external view of the initial subcutaneous and muscular dissection 

This is how the surgical site is presented by the robot, but in 3 dimensions.

After a wide dissection the teres major on the left is separated from the latissimus dorsi on the right

The tendon is cut from its humeral insertion

Latissimus is mobilized and separated from the teres major

Care must be taken because as you can see the radial nerve lies just under the tendon 

Knowing where the nerve it is easier to release the muscular part or the Latissimus dorsi

The released tendon is sutured

The needle and the wire pass through the optics portal

The deltoid approach is done and a guide polyester wire is also inserted from subdeltoid to the optics portal

Anchors are inserted in the humeral head through the same deltoid approach and their wires are passed by using the guide polyester to the optics portal.

The wires of the suture anchors are sutured on the tendon and the tendon is pulled through cavity until the subdeltoid space and the final fixation in the bone is done 

Figure Legends

Fig. 1. Patient in ventral decubitus: A and B: Robotic hand trocaters, C: Optics Trocater,  D: Shoulder, E: Robotic Exterior Hand, F: Robotic Exterior Hand for Optics.

Fig. 2. Robotic Optics 30º with 2 cameras allowing a stereoscopic view.

Fig. 3. Optics within the central portal. TM:Teres Major, LD: Latissimus Dorsi

Fig. 4. Optics within the central portal. TM: Teres Major, LD: Latissimus Dorsi released

Fig. 5. Optics within the central portal. A: Radial Nerve, B: Teres Major insertion, C: Latissimus Dorsi retracted.

Fig. 6. Optics within the central portal.TLH: Trices Long Head, LD: Latissimus Dorsi, TM: Teres Major

Fig. 7. Patient in ventral decubitus, shoulder and scapular area exposed A: Polyester guide wire through the deltoid approach, B: Gastric forceps, C: Wires where the Latissimus Dorsi was sutured, D: Polyester guide wire exit

Fig. 8. Patient in ventral decubitus, shoulder and scapular area exposed  A: Latissimus dorsi sutured with the suture anchor wires, B: The other parts of the suture anchor wires, these will pull the tendon to the humeral head.

Table Legends

Table. 1 Pearls and Pitfalls

Table. 2  Advantages and disadvantages comparing Robotic versus Arthroscopic versus Open surgeries for Latissimus Dorsi transfer.